Menu
Новые сообщения Участники Правила форума Поиск RSS
Модератор форума: Bukashka, noka  
Решение задач по математике.
Гость
07.02.2012, 20:18, Вторник | Сообщение 1111
a) Решите систему уравнений
log3(x+y)=4,
noka Offline Друзья сайта
07.02.2012, 20:37, Вторник | Сообщение 1112
Quote (Гость)
a) Решите систему уравнений
log3(x+y)=4,

а где второе уравнение???
KoKeTkA Offline Друзья сайта
07.02.2012, 22:13, Вторник | Сообщение 1113
периметр основания правильной треугольной пирамиды равен 18см, а угол образованный высотой пирамиды с боковой гранью равной 30*.определите объем пирамиды?помогите решить задачку,и если можно с рисуночком=)
noka Offline Друзья сайта
07.02.2012, 22:50, Вторник | Сообщение 1114
KoKeTkA,
вот решение и с рисуночком ))
Прикрепления: 1586585.png (22.2 Kb)
terminator987654321 Offline Студенты
Сообщений (31) Репутация (0) Награды (0)
08.02.2012, 19:34, Среда | Сообщение 1115
Vsem privett))) rewite plizzzz))))
Прикрепления: 8201906.jpg (161.3 Kb)
Lonely_MooN2055 Offline Студенты
Сообщений (129) Репутация (175) Награды (1)
08.02.2012, 20:03, Среда | Сообщение 1116
Quote (terminator987654321)
Vsem privett))) rewite plizzzz))))
Прикрепления: 8201906.jpg(161Kb)

Добавлено (08.02.2012, 19:03)
---------------------------------------------
такие ответы?

Прикрепления: 1995736.jpg (121.2 Kb)
Спортсмен Offline Студенты
08.02.2012, 20:28, Среда | Сообщение 1117
Из пробных 2011, вариант 2002
10) Решить систему уравнений x^2+xy-y^2=11
x-2y=1
У меня получилось (-3;2), (3,1) Проверил, вроде правильно. А в ответах правильный почему-то (0;2), (-7;5). Опечатка???

13) Найти сумму корней уравнения √(x-1)+√(11-x)=4
У меня 12, в ответах 10. Снова опечатка?

Примеры лёгкие. Может кто сталкивался.
Артем Offline Администрация
08.02.2012, 21:41, Среда | Сообщение 1118
Спортсмен,

Quote
{x2+xy-y2=11
{x-2y=1


Из второго выражаем x=1+2y
Подставляем в первое и сразу квадраты выражения найдем:

1+4y+4y2+y+2y2-y2=11
5y2+5y-10=0
y2+y-2=0
y1=-2; y2=1
x1=-3; x2=3

Ответ (3;1) и (-3;-2)

Теперь второе уравнение.

Quote
√(x-1)+√(11-x)=4


√(x-1)=4-√(11-x)
Обе части в квадрат.
x-1=16-8√(11-x)+11-x
2x-28=8√(11-x)
x-14=4√(11-x)
x2-28x+196=16(11-x)
x2-12x+20=0

Ответ: x1 = 2, x2 = 10
Bukashka Offline Друзья сайта
09.02.2012, 01:17, Четверг | Сообщение 1119
Quote (Спортсмен)
10) Решить систему уравнений x^2+xy-y^2=11 x-2y=1 У меня получилось (-3;2), (3,1) Проверил, вроде правильно. А в ответах правильный почему-то (0;2), (-7;5). Опечатка???

Я посмотрела : Ответ x = 3, y = 1; x = -3, y = -2;

Добавлено (09.02.2012, 00:06)
---------------------------------------------
Подставляем первую пару ответов : ( -3 ;-2) в первое уравнение:
Получаем: 9+ ( -3* (-2))-4=9+6-4=11 ( ВЕРНО!)
Вторую пару : (3;1)
3-2=1 ( Верно!)
Значит ответ: (-3;-2);(3;1)

Quote (Спортсмен)
13) Найти сумму корней уравнения √(x-1)+√(11-x)=4 У меня 12, в ответах 10. Снова опечатка?

Действительно, корни равны x=2, x=10. Их сумма равна 2+10=12

Добавлено (09.02.2012, 00:17)
---------------------------------------------
Проверка для уравнения: 1) Подставляем двойку : √(2-1)+√(11-2) = √(1)+√(9)= 1+3=4
Второе: Подставляем десятку: √(10-1)+√(11-10)=√(9)+√(1)=3+1 =4
Все верно!

Гость
09.02.2012, 22:39, Четверг | Сообщение 1120
1)AC=9см,<ABC=60градусов, AO=R,найдите АО
2)В окружность вписан правильный треугольник, сторона которого равна 6 см. вычислить площадь квадрата,вписанного в ту же окружность
3)В правильном шестиугольнике наибольшее расстояние между противоположными вершинами равно 14 см. вычислить площадь шестиугольника
noka Offline Друзья сайта
09.02.2012, 23:07, Четверг | Сообщение 1121
Quote (Гость)
1)AC=9см,<ABC=60градусов, AO=R,найдите АО

R=9√3
Quote (Гость)
2)В окружность вписан правильный треугольник, сторона которого равна 6 см. вычислить площадь квадрата,вписанного в ту же окружность

а сторона треугольника ,тогда R=6/√3=2√3
D=2R=4√3
D=в√2
в сторона квадрата
в=D/√2=4√3/√2=2√6
S=в*в=2√6*2√6=24

Добавлено (09.02.2012, 22:07)
---------------------------------------------

Quote (Гость)
)В правильном шестиугольнике наибольшее расстояние между противоположными вершинами равно 14 см. вычислить площадь шестиугольника

D=14=2R
R=7
S=3√3R^2/2=3√3*49/2=147√3/2
Гость
10.02.2012, 19:24, Пятница | Сообщение 1122
1)Катеты прямоугольного треугольника равны 40см и 42см. Насколько радиус описанной окружности больше радиуса вписанной окружности
2)найдите меньший угол выпуклого пятиугольника,если его углы пропорциональны числам 1;3;5;7;11
3)Точи А,В и С лежат на окружности с центром О. Найдите угол АОС,если угол АВС=66градусов
noka Offline Друзья сайта
10.02.2012, 21:11, Пятница | Сообщение 1123
Quote (Гость)
1)Катеты прямоугольного треугольника равны 40см и 42см. Насколько радиус описанной окружности больше радиуса вписанной окружности

гипотенуза равна 58,
по теореме пифагора
R=0.5*c=58*0,5=29
S=p*r
r=S/p
S=0.5*40*42=840
p=0.5(40+42+58)=70
r=840/70=12
R-r=29-12=17

Добавлено (10.02.2012, 20:09)
---------------------------------------------

Quote (Гость)
2)найдите меньший угол выпуклого пятиугольника,если его углы пропорциональны числам 1;3;5;7;11

х+3х+5х+7х+11х=180(5-2)
27х=540
х=20

Добавлено (10.02.2012, 20:11)
---------------------------------------------

Quote (Гость)
3)Точи А,В и С лежат на окружности с центром О. Найдите угол АОС,если угол АВС=66градусов

АОС=2АВС=2*66=132
Гость
11.02.2012, 20:55, Суббота | Сообщение 1124
1)Радиус окружности описанной около треугольника АВС равен √(8)см а два угла треугольника равны по 45 градусов. найдите сумму двух меньших сторон треугольника
2)На касательной к окружности от точки касания Е отложены по обе стороны от нее два отрезка ЕА и ЕВ, причем<АОЕ=<ВОЕ,О- центр окружности. Радиус окружности равен 8см,АВ=30см.Найдите расстояние от центра окружности до точки А
3) Радиус окружности описанной около правильного треугольника равен 6см.Найдите радиус окружности вписанной в этот треугольник
noka Offline Друзья сайта
11.02.2012, 21:07, Суббота | Сообщение 1125
Quote (Гость)
1)Радиус окружности описанной около треугольника АВС равен √(8)см а два угла треугольника равны по 45 градусов. найдите сумму двух меньших сторон треугольника

Прикрепления: 6169674.png (23.7 Kb)
noka Offline Друзья сайта
11.02.2012, 21:30, Суббота | Сообщение 1126
вот решение второй задачи

Добавлено (11.02.2012, 20:30)
---------------------------------------------

Quote (Гость)
3) Радиус окружности описанной около правильного треугольника равен 6см.Найдите радиус окружности вписанной в этот треугольник

в правильном треугольнике 2r=R
r=R/2=3 см
Прикрепления: 7308549.png (22.9 Kb)
Kanat_ Offline Ученики
11.02.2012, 21:48, Суббота | Сообщение 1127
Добрый вечер! помогите пожалуйста. вариант 13 № 9,10,11,12,13,14,15,18,19,20,21,22, facepalm
noka Offline Друзья сайта
11.02.2012, 22:50, Суббота | Сообщение 1128
Kanat_,
A(1;-5) B(3;1)
O(1+3)/2;(-5+1)/2=(2;-2)
ответ:Е

Добавлено (11.02.2012, 21:22)
---------------------------------------------

Quote (Kanat_)
10

3у-3у^3=y^2-y^4
3y(1-y^2)-y^2(1-y^2)=0
(1-y^2)(3y-y^2)=0
(1-y^2)=0 (3y-y^2)=0
y^2=1 y(3-y)=0
y=+-1 y=0 y=3

Добавлено (11.02.2012, 21:40)
---------------------------------------------

Quote (Kanat_)
11

log2(x+y)=4
2x-y=5

2^4=x+y=16
2x-y=5


x=16-y
32-2y-y=5
-3y=-27
y=9
x=16-9=7

Добавлено (11.02.2012, 21:50)
---------------------------------------------

Quote (Kanat_)
12

log1/16x+log1/4x+log1/2x=7
log2^-4x+log2^-2x+log2^-1=7
-1/4log2x-1/2log2x-1log2x=7
log2x*(-1/4-1/2-1)=7
log2x=7*-4/7=-4
x=2^-4=1/16
x/(x+1)+1=18/17
ответ:Е
остальное если надо выложу, как только покушаю)))
noka Offline Друзья сайта
11.02.2012, 23:53, Суббота | Сообщение 1129
Quote (Kanat_)
13

3√-это кубический корень
3√(x+34)-3√(x-3)=1
замена
3√(x+34)=t
x+34=t^3
x-3=t^3-37
t-3√t^3-37=1
3√t^3-37=t-1
t^3-37=t^3-3t^2+3t-1
3t^2-3t-36=0
t^2-t-12=0
t1=-3 t2=4
обратная замена
3√(x+34)=3 3√(x+34)=-4
x+34=-27 x+34=64
x=-61 x=30
Ответ:А
noka Offline Друзья сайта
12.02.2012, 00:30, Воскресенье | Сообщение 1130
Quote (Kanat_)
14

sin2x<1/2

-7π/6+2πn<2x<π/6+2πn
-7π/12+πn<x<π/12+πn
Ответ:В

Добавлено (11.02.2012, 23:20)
---------------------------------------------

Quote (Kanat_)
15

b4+b5=24 b6-b4=24 S=127
b4(1+q)=24 b4(q^2-1)=24
b4(1+q)=b4(q^2-1)
1+q=q^2-1
q^2-q-2=0
q1=-1(пк) q2=2
q=2
b1(q^3+q^4)=24
b1=24/(8+16)=1

S=b1(q^n-1)/(q-1)=1(2^n-1)=127
2^n-1=127
2^n=126
n=7
ответ:С

Добавлено (11.02.2012, 23:30)
---------------------------------------------

Quote (Kanat_)
18

y=(x+1)/x x0=1
y=f(x0)-f'(x0)(x-x0)
y(x0)=(1+1)/1=2
f'(x)=[(x+1)'x-x'(x+1)]/x^2=[x-x+1]/x^2=1/x^2
f'(x0)=1/1=1
y=f(x0)-f'(x0)(x-x0)=2-1(x-1)=-x+3
Ответ:Д
Прикрепления: 9023081.png (18.5 Kb)
noka Offline Друзья сайта
12.02.2012, 00:45, Воскресенье | Сообщение 1131
Quote (Kanat_)
19

Прикрепления: 4470140.png (27.5 Kb)
Гость
12.02.2012, 00:48, Воскресенье | Сообщение 1132
упростите ворожение cos²(360°-x)+cos²(270°+x)
noka Offline Друзья сайта
12.02.2012, 00:56, Воскресенье | Сообщение 1133
Quote (Kanat_)
20

(2x-y)/3-(x-2y)/2=3/2
(2y+x)/2-(x+2y)/3=1/3

(2x-y)/3-(x-2y)/2=3/2 (2y+x)/2-(x+2y)/3=1/3
4x-2y-3x+6y=9 6x+3y-2x-4y=2
x+4y=9 4x-y=2

x+4y=9
4x-y=2|*4

x+4y=9
+
16x-4y=8
17x=17
x=1
4x-y=2
y=4x-2=4-2=2
(1;2)
Ответ:Е
noka Offline Друзья сайта
12.02.2012, 01:30, Воскресенье | Сообщение 1134
Quote (Kanat_)
21

(x-3)^2x^2-7x>1
рассматриваем 2 случая
1) х-3>1 x>4
(x-3)^2x^2-7x>(x-3)^0 x-3≠1 x-3>0
2x^2-7x>0 x≠4 x>3
x(2x-7)>0
x(2x-7)=0
x=0 x=3,5

2) 0<х-3<1
3<x<4
(x-3)^2x^2-7x<(x-3)^0 x-3≠1 x-3>0
2x^2-7x<0 x≠4 x>3
x(2x-7)<0
x(2x-7)=0
x=0 x=3,5

теперь объединяем решения
(3;3,5)∪(4;+∞)
Ответ:С
Прикрепления: 1863047.png (14.1 Kb) · 6942399.png (12.1 Kb)
noka Offline Друзья сайта
12.02.2012, 02:13, Воскресенье | Сообщение 1135
Quote (Kanat_)
22

последнее)))
[sin(α+63)+sin(α-57)]/2cos(α-87)

Ответ:Е

Добавлено (12.02.2012, 01:13)
---------------------------------------------

Quote (Гость)
упростите ворожение cos²(360°-x)+cos²(270°+x)

cos²(360°-x)+cos²(270°+x)=
=cos(360°-x)*cos(360°-x)+cos(270°+x)*cos(270°+x)=
=cosx*cosx*+sinx*sinx=cos²x+sin²x=1
Прикрепления: 6407717.png (19.4 Kb)
Спортсмен Offline Студенты
12.02.2012, 10:33, Воскресенье | Сообщение 1136
Для функции f(x)=1 / (2x+1)^2 найти первообразную F(x), принимающую значение F(-2)=1 ?
Правильный ответ: (-1) / 2*(2x+1)+5/6
Там как-то получается при переводе в первообразную, что двойка перед иксом выносится. А что за формула, и где найти эти правила?

И ещё такое: найти производную f(x)=5^(1+sin x) ?
Правильный ответ: 5^(1+sin x)*cos x * ln 5
Какие формулы нужны? Спасибо.
KoKeTkA Offline Друзья сайта
12.02.2012, 12:00, Воскресенье | Сообщение 1137
Quote (Спортсмен)
Для функции f(x)=1 / (2x+1)^2 найти первообразную F(x), принимающую значение F(-2)=1 ?

для начала упростим f(x)=1 / (2x+1)^2=(2х+1)^(-2)
F(x)=2x+1)^(-1)/(-1)=-2(2x+1)^(-1)/(2x+1)' <------ делим на производную этой функции
F(x)=-1/(2(2x+1))
теперь для того, чтобы из всех найденных первообразных выбрать ту, которая принимает значения F(-2)=1, решим уравнение:
F(x0)+C=y0
-1/(2(2*(-2)+1))+C=1
1/6+C=1
C=1-1/6
C=-5/6
F(x)=(-1) / 2*(2x+1)-5/6.......только вот у меня почему то минус 5/6...посмотри сам,может где-нибудь ошиблась.
P.S. извини за тот случай facepalm smile
noka Offline Друзья сайта
12.02.2012, 15:25, Воскресенье | Сообщение 1138
Quote (KoKeTkA)
C=1-1/6
C=-5/6

KoKeTkA,
я нашла твою ошибку
1-1/6=5/6
F(x)=(-1) / 2*(2x+1)+5/6

Добавлено (12.02.2012, 14:25)
---------------------------------------------

Quote (Спортсмен)

И ещё такое: найти производную f(x)=5^(1+sin x) ?
Правильный ответ: 5^(1+sin x)*cos x * ln 5
Какие формулы нужны? Спасибо.

здесь производная находится по формуле
a^u=a^u*lna
теперь подставляем в эту формулу
f(x)=5^(1+sin x)
f'(x)=5^(1+sin x)*ln5^(1+sin x)'=5^(1+sin x)*cos x * ln 5
(1+sin x)' это производная от внутренней функции
Гость
12.02.2012, 16:31, Воскресенье | Сообщение 1139
Помогите
Найти прирощение функции в точке х0
f(x)=1-2x x0=4 делтаX=-0.01
f(x)=-2x+1.6 x0=-3 делтаX=-0.1
Найти прирощение аргумента и прирощение функции в точке х0
f(x)=cosx x0=Пи/6 x=Пи/4 здесь ответ прирощение аргумента Пи/12 а прирощение функции
√2-√3/2
noka Offline Друзья сайта
12.02.2012, 16:50, Воскресенье | Сообщение 1140
Quote (Гость)
Помогите
Найти прирощение функции в точке х0

что такое прирощение??
Поиск: