Системы линейных уравнений
Общей линейной системой из m уравнений с n неизвестными называется система:
,
где
– матрица системы, X - вектор-столбец неизвестных коэффициентов, B - вектор-столбец свободных членов.

Данная запись эквивалентна матричной форме записи
,где
– матрица системы, X - вектор-столбец неизвестных коэффициентов, B - вектор-столбец свободных членов. Систему называют однородной, если b1=b2=…=bm=0.В противном случае ее называют неоднородной.
Системы уравнений классифицируются следующим образом:
1) несовместная система уравнений (нет решений),
2) совместная система уравнений (есть хотя бы одно решение):
a) определенная (только одно решение),
b) неопределенная (бесконечно много решений).
Одной из основных является следующая теорема.
Теорема (Кронекера-Капелли)
Пусть
- расширенная матрица системы (1).
1) Система (1) совместна
a) если
- матрица размера n x n, причем
, то система определенная.
b) если
, то система неопределенная.
2) Если
, то система несовместная.
Поиск на сайте