Корреляционный анализ экспериментальных данных для двух случайных величин заключает в себе следующие основные приемы:
1. Вычисление выборочных коэффициентов корреляции.
2. Составление корреляционной таблицы.
3. Проверка статистической гипотезы значимости связи.
ОПРЕДЕЛЕНИЕ. Корреляционная зависимость между случайными величинами Х и Y называется линейной корреляцией, если обе функции регрессии f(x) и φ(x) являются линейными. В этом случае обе линии регрессии являются прямыми; они называется прямыми регрессии.
Для достаточно полного описания особенностей корреляционной зависимости между величинами недостаточно определить форму этой зависимости и в случае линейной зависимости оценить ее силу по величине коэффициента регрессии. Например, ясно, что корреляционная зависимость возраста Y учеников средней школы от года Х их обучения в школе является, как правило, более тесной, чем аналогичная зависимость возраста студентов высшего учебного заведения от года обучения, поскольку среди студентов одного и того же года обучения в вузе обычно наблюдается больший разброс в возраcте, чем у школьников одного и того же класса.
Для оценки тесноты линейных корреляционных зависимостей между величинами Х и Y по результатам выборочных наблюдений вводится понятие выборочного коэффициента линейной корреляции, определяемого формулой:

где σX и σY выборочные средние квадратические отклонения величин Х и Y, которые вычисляются по формулам:

Следует отметить, что основной смысл выборочного коэффициента линейной корреляции rB состоит в том, что он представляет собой эмпирическую (т.е. найденную по результатам наблюдений над величинами Х и Y) оценку соответствующего генерального коэффициента линейной корреляции r: r=rB (9)
Принимая во внимание формулы:
видим, что выборочное уравнение линейной регрессии Y на Х имеет вид:

где . То же можно сказать о выборочном уравнений линейной регрессии Х на Y:

Основные свойства выборочного коэффициента линейной корреляции:
1. Коэффициент корреляции двух величин, не связанных линейной корреляционной зависимостью, равен нулю.
2. Коэффициент корреляции двух величин, связанных линейной корреляционной зависимостью, равен 1 в случае возрастающей зависимости и -1 в случае убывающей зависимости.
3. Абсолютная величина коэффициента корреляции двух величин, связанных линейной корреляционной зависимостью, удовлетворяет неравенству 0<|r|<1. При этом коэффициент корреляции положителен, если корреляционная зависимость возрастающая, и отрицателен, если корреляционная зависимость убывающая.
4. Чем ближе |r| к 1, тем теснее прямолинейная корреляция между величинами Y, X.
По своему характеру корреляционная связь может быть прямой и обратной, а по силе – сильной, средней, слабой. Кроме того, связь может отсутствовать или быть полной.
Сила связи |
Характер связи | |
Прямая (+) | Обратная (-) | |
Полная | 1 | -1 |
Сильная | От 0,7 до 1 | От -0,7 до -1 |
Средняя | От 0,3 до 0,7 | От -0,3 до -0,7 |
Слабая | От 0,3 до 0 | От -0,3 до 0 |
Связь отсутсвует | 0 | 0 |
Пример 4. Изучалась зависимость между двумя величинами Y и Х. Результаты наблюдений приведены в таблице в виде двумерной выборки объема 11:
X | 68 | 37 | 50 | 53 | 75 | 66 | 52 | 65 | 74 | 65 | 54 |
Y | 114 | 149 | 146 | 141 | 114 | 112 | 124 | 105 | 141 | 120 | 124 |
Требуется:
1) Вычислить выборочный коэффициент корреляции;
2) Оценить характер и силу корреляционной зависимости;
3) Написать уравнение линейной регрессии Y на Х.
Решение. По известным формулам:
Отсюда, по (7) и (8):
Таким образом, следует сделать вывод, что рассматриваемая корреляционная зависимость между величинами Х и Y является по характеру – обратной, по силе – средней.
3) Уравнение линейной регрессии Y на Х:
Пример 5. Изучалась зависимость между качеством Y (%) и количеством Х (шт). Результаты наблюдений приведены в виде корреляционной таблицы:
Y\X | 18 | 22 | 26 | 30 | ny |
70 | 5 | 5 | |||
75 | 7 | 46 | 1 | 54 | |
80 | 29 | 72 | 101 | ||
85 | 29 | 8 |
37 | ||
90 | 3 | 3 | |||
nx | 12 | 75 | 102 | 11 | 200 |
Требуется вычислить выборочный коэффициент линейной корреляции зависимости Y от Х.
Решение. Для упрощения вычислений перейдем к новым переменным – условным вариантам (ui, vi), воспользовавшись формулами (*) (§3) при h1=4, h2=5, x0=26, y0=80. Для удобства перепишем данную таблицу в новых обозначениях:
u\v | -2 | -1 | 0 | 1 | nv |
-2 | 5 | 5 | |||
-1 | 7 | 46 | 1 | 54 | |
0 | 29 | 72 | 101 | ||
1 | 29 | 8 |
37 | ||
2 | 3 | 3 | |||
nu | 12 | 75 | 102 | 11 | 200 |
Имеем при xi=ui и yj=vj:
Таким образом:
Отсюда,
Вывод: Корреляционная зависимость между величинами Х и Y - прямая и сильная.