Menu
Классическое определение вероятности
Вероятность – одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим.

Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них красные, 3-синие и 1-белый. Очевидно, возможность вынуть наудачу из урны цветной (т.е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появление цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

ОПРЕДЕЛЕНИЕ (классическое определение вероятности). Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

Итак, вероятность события А определяется формулой:

(1)

где m – число элементарных исходов, благоприятствующих А; n – число всех возможных элементарных исходов испытания.

Пример 1 Найти вероятность события А={появление не менее пяти очков при одном бросании игральной кости}.

Используем формулу (1). В нашем случае число возможных исходов n=6, а число, благоприятствующих этому событию исходов, m=2. То есть P(A)=2/6=1/3. Итак, вероятность появления не менее пяти очков при одном бросании игральной кости равна 0.33 или 1/3

Из определения вероятности вытекают следующие ее свойства:

Свойство 1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m=n, следовательно, P(A)=m/n=n/n=1

Свойство 2. Вероятность невозможного события равна нулю.

В этом случае m=0, следовательно, P(A)=m/n=0/n=0

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае 0<m<n, значит 0<m/n<1, следовательно,

0<P(A)<1

Итак, вероятность любого события удовлетворяет двойному неравенству

0P(A)1
Добавлять комментарии могут только зарегистрированные пользователи.
Регистрация Вход