Menu
Вычисление и построение эмпирических функций распределения
Пусть известно статистическое распределение частот количественного признака Х. Введем обозначения: nх - число наблюдений, при которых наблюдалось значение признака меньшее x1, n – общее число наблюдений (объем выборки). Ясно, что относительная частота события Хх/n. Если х будет изменяться, то, вообще говоря, будет, меняться и относительная частота, т.е. относительная частота nх/n есть функция от х. Так как эта функция находится эмпирическим (опытным) путем, то ее называют эмпирической.

Эмпирической функцией распределения (функцией распределения выборки) называют функцию F*(x), определяющую для каждого значения х относительную частоту события Х

F*(x)=nх/n

где nх – число вариант, меньшее х, n – объем выборки

Таким образом, для того, чтобы найти, например F*(x2), надо число вариант, меньшее x2, разделить на объем выборки n: F*(x2)=nх2/n

В отличие от эмпирической функции распределения выборки, интегральную функцию F(x) распределения генеральной совокупности называют теоретической функцией распределения. Различие между эмпирической и теоретической функциями состоит в том, что теоретическая функция F(x) определяет вероятность события Х Из определения функции F*(x) вытекают следующие ее свойства:
1. Значения эмпирической функции принадлежат отрезку [0;1]
2. F*(x) - неубывающая функция
3. Если х1 – наименьшая варианта, то F*(x)=0 при х≤х1; если хk – наибольшая варианта, то F*(x)=1 при х>хk.

Итак, эмпирическая функция распределения выборки служит для оценки теоретической функции распределения генеральной совокупности.

Пример 5. Построить эмпирическую функцию по данному распределению выборки:

Варианты xi 2 6 10
Частоты ni 12 18 30

Решение: Найдем объем выборки: 12+18+30=60. Наименьшая варианта равна 2, следовательно F*(x)=0 при x≤2. Значение х<6, а именно х1= 2 наблюдалось 12 раз, следовательно, F*(x)=12/60=0.2 при 21=2 и х2=6 наблюдались 12+18=30 раз, следовательно, F*(x)=30/60=0.5 при 6 Так как х=10 – наибольшая варианта, то F*(x)=1 при x>10.
Искомая эмпирическая функция:

Добавлять комментарии могут только зарегистрированные пользователи.
Регистрация Вход