Menu
Новые сообщения Участники Правила форума Поиск RSS
Модератор форума: Bukashka, noka  
Прогрессия. Геометрическая и арифметическая. Сумма n.
Isa_M255 Offline Студенты
04.12.2012, 19:00, Вторник | Сообщение 211
Quote (Гость)
Арифметическая прогрессия задана формулой an=3n+2. Найдите сумму первых тринадцати ее членов

вроде правильно)
Прикрепления: 6839369.jpg (209.8 Kb)
Гость
09.12.2012, 23:37, Воскресенье | Сообщение 212
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.
Гость
09.12.2012, 23:39, Воскресенье | Сообщение 213
Quote (Isa_M255)
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.

Quote (Isa_M255)
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.

Quote (Isa_M255)
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.

Quote (Isa_M255)
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.

Quote (Isa_M255)
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.

Quote (Гость)
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.

Quote (Гость)
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.

Quote (Isa_M255)
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.
nurik7423 Offline Ученики
Сообщений (13) Репутация (0) Награды (0)
11.12.2012, 14:31, Вторник | Сообщение 214
дана арифметическая прогрессия с разностью 4 и третьим элементом равным 12, 1-ый, 2-ой, 4-ый, 8-ой ее члены составляют геометрическую прогрессию.Найти сумму геометрической прогрессии.
d=4 a₃=12
a₃=a₁+2d
12=a₁+8
a₁=4 a₂=8 a₄=16 a₈=32 (d=2)
S₄=4+8+16+32=60
Гость
12.12.2012, 01:27, Среда | Сообщение 215
помогите решить, пожалуйста))

если в геометрической прогрессии пятый член равен 81, а знаменатель -3/4, то необходимо найти первый член прогрессии и сумму первых пяти членов прогрессии
palit Offline Ученики
12.12.2012, 01:56, Среда | Сообщение 216
b₁=b₅/q⁵⁻¹=81/(-3/4)⁵⁻¹=256
S₅=(b₁(1-q⁵))/(1-q)≈97.3
gulmira
12.12.2012, 19:16, Среда | Сообщение 217
Пожалуйста помогите мне решить эту задачу.
b2=14; b4=56; надо найти b3 ?
И ещё одно:
b4-b2=18;
b5-b3=36; здесь нужно найти b1. Пожалуйста помогите а умные люди?
Vershina Offline Студенты
Сообщений (629) Репутация (679) Награды (2)
12.12.2012, 20:20, Среда | Сообщение 218
Quote (gulmira)
Пожалуйста помогите мне решить эту задачу.
b2=14; b4=56; надо найти b3 ?
И ещё одно:
b4-b2=18;
b5-b3=36; здесь нужно найти b1. Пожалуйста помогите а умные люди?

СИСТЕМА,
{b4-b2=18; {b1q^3-b1q=18 {b1q(q^2-1)=18
{b5-b3=36 {b1q^4-b1q^2=36 {b1q^2(q^2-1)=36

1/q=1/2
q=2 b1=3
,
Гость
15.12.2012, 14:54, Суббота | Сообщение 219
найдите сумму первых а)трех членов б)шести членов геометрической прогрессии 5 и дробь 5 а знаменатель 6
Arhimed96 Offline Заблокированные
15.12.2012, 15:10, Суббота | Сообщение 220
Quote (Гость)
найдите сумму первых а)трех членов б)шести членов геометрической прогрессии 5 и дробь 5 а знаменатель 6

Небось ДЗ, делай сам(a). Да и задача некорректная.
Гость
24.12.2012, 17:05, Понедельник | Сообщение 221
найти сумму восьми первых членов геометрической прогрессии а1 с положительными членами зная, что а2 =1,2 и а4=4,8
Гость
24.12.2012, 17:06, Понедельник | Сообщение 222
представте в виде обыкновенной дроби бесконечную десятичную дробь а) 0,(153); б) 0,3(2)
Гость
27.12.2012, 17:20, Четверг | Сообщение 223
b₄-b₂=18
b₅-b₃=36
найти:b₁-?
NEWSTAR Offline Друзья сайта
27.12.2012, 19:14, Четверг | Сообщение 224
Цитата (Гость)
b₄-b₂=18
b₅-b₃=36
найти:b₁-?

Добавлено (27.12.2012, 18:14)
---------------------------------------------

Цитата (Гость)
представте в виде обыкновенной дроби бесконечную десятичную дробь а) 0,(153); б) 0,3(2)

0.(153)=153/999
0.3(2)=32-3/90=29/90
Прикрепления: 8477423.png (41.3 Kb)
Гость
08.01.2013, 20:42, Вторник | Сообщение 225
Определить бесконечно убывающую геометрическую прогрессию в которой второй член равен 6 а сумма членов равна 1.8 суммы квадратов ее членов
Lera
10.01.2013, 22:31, Четверг | Сообщение 226
Помогите пожалуйста решить.
Три различных числа образуют геометрическую прогрессию, домноженные на 1,2 и 3 соответственно образуют арифметическую прогрессию. Найдите q исходной прогрессии.
Артем Offline Администрация
11.01.2013, 00:58, Пятница | Сообщение 227
Цитата (Lera)
Три различных числа образуют геометрическую прогрессию, домноженные на 1,2 и 3 соответственно образуют арифметическую прогрессию. Найдите q исходной прогрессии.


Такую уже где то решали)
Эрика
12.01.2013, 01:14, Суббота | Сообщение 228
пусть эти три члена геометрической прогрессии - b₁, b₂ и b₃. умножим их на 1, 2 и 3 соответственно как говорится в условии, получим b₁, 2b₂ и 3b₃ - члены арифметической прогрессии.
Тогда по определению арифметической прогрессии.
2b₂-b₁=3b₃-2b₂
2b₁*q-b₁=3b₁*q²-2b₁*q
b₁(2q-1)=b₁(3q²-2q)
Сокращаем в1 так как это число
2q-1=3q²-2q
3q²-4q+1=0
q=1 не подходит и q=1/3
Einstein_kz Offline Ученики
Сообщений (16) Репутация (1) Награды (0)
14.01.2013, 19:17, Понедельник | Сообщение 229
bn-геометрическая прогрессия, n=1990. Сумма членов, стоящих на нечетных местах, равна 138, а сумма членов, стоящих на четных местах равна равна 69. Найдите q
Помогит решить пожалуйста))
Гость
14.01.2013, 20:14, Понедельник | Сообщение 230
Найдите сумму первых 12 членов последовательности (cn) если1)cn=4n-0.52)cn=2n
Эрика Offline Друзья сайта
14.01.2013, 23:19, Понедельник | Сообщение 231
Эйнштейн, у вас будет система уравнений
b₁+b₃+...+b₁₉₈₉=138
b₂+b₄+...+b₁₉₉₀=69

b₁+b₁*q²+...+b₁*q¹⁹⁸⁸=138
b₁*q+b₁*q³+...+b₁*q¹⁹⁸⁹=69 вынесем q за скобки

b₁+b₁*q²+...+b₁*q¹⁹⁸⁸=138
q(b₁+b₁*q²+...+b₁*q¹⁹⁸⁸)=69 поделим второе уравнение на первое

q=0.5 ответ!

Гость
1)Cn=4n-0,5=a₁+d(n-1)⇒d=4
4n-0.5=a₁+4(n-1)
a₁=3.5
S₁₂=(2a₁+d(n-1))*n/2=(2*3.5+4*11)*6=306
второе сами сделаете, видимо это домашка, надеюсь стало понятней как это получилось
Гость
16.01.2013, 23:45, Среда | Сообщение 232
1)Каким членом арифметическим прогресии является число 26,если а₂=-7,3 а₂=-6,4
2)а₂+а₅₌25
а₉-а₄=75
а₁=? d=?
3)а₁=56
а₁=1
S₁₁=?
Помогите Пожалуйста =) До Завтра
foge11y
18.01.2013, 22:10, Пятница | Сообщение 233
В арифметической прогрессии 10 членов. Сумма членов с четными номерами 25, а сумма членов с нечетними номерами равна 10. Найдите седьмой член прогрессии.
Эрика Offline Друзья сайта
19.01.2013, 13:12, Суббота | Сообщение 234
Цитата (foge11y)
В арифметической прогрессии 10 членов. Сумма членов с четными номерами 25, а сумма членов с нечетними номерами равна 10. Найдите седьмой член прогрессии.

n=10, a7-?
Система
a1+a3+...+a9=10
a2+a4+...+a10=25

a1+a1+2d+...+a1+8d=10
a1+d+a1+3d+...+a1+9d=25

5a1+20d=10
5a1+25d=25 вычтем из второго первое

5d=15
d=3
a1=-10
a7=a1+6d=-10+18=8
Гость
22.01.2013, 23:12, Вторник | Сообщение 235
найдите сумму десяти первых членов арифметической прогрессии: 4; 8; 12; 16; ...;
Гость
23.01.2013, 00:35, Среда | Сообщение 236
Цитата (Гость)
найдите сумму десяти первых членов арифметической прогрессии: 4; 8; 12; 16; ...;

S5=4+8+12+16+20 = 60
Гость
25.01.2013, 16:23, Пятница | Сообщение 237
В геометрической прогрессии n=5;q=1/3;Sn=121. Найдите первый и n-й член прогрессии.
Гость
25.01.2013, 19:39, Пятница | Сообщение 238
Блин да ! кто начал решать математику 2013 как 7 задание 1ого варианта делать?
Эрика Offline Друзья сайта
26.01.2013, 15:49, Суббота | Сообщение 239
Sn=b1*(q^n-1)/(q-1)
121=b₁*((1/3)⁵-1)/(1/3-1)
121=b₁*((242/243)/(2/3))
121=b₁*121/81
b₁=81
b₅=81*(1/3)^4=1
Гость
29.01.2013, 18:35, Вторник | Сообщение 240
найти сумму первых 18 членов арифметической прогрессии,если а₄=16,а₇+а₁₀=5
Поиск: